Visualizing High-Dimensional Structures by Dimension Ordering and Filtering using Subspace Analysis

نویسندگان

  • Bilkis J. Ferdosi
  • Jos B. T. M. Roerdink
چکیده

High-dimensional data visualization is receiving increasing interest because of the growing abundance of highdimensional datasets. To understand such datasets, visualization of the structures present in the data, such as clusters, can be an invaluable tool. Structures may be present in the full high-dimensional space, as well as in its subspaces. Two widely used methods to visualize high-dimensional data are the scatter plot matrix (SPM) and the parallel coordinate plot (PCP). SPM allows a quick overview of the structures present in pairwise combinations of dimensions. On the other hand, PCP has the potential to visualize not only bi-dimensional structures but also higher dimensional ones. A problem with SPM is that it suffers from crowding and clutter which makes interpretation hard. Approaches to reduce clutter are available in the literature, based on changing the order of the dimensions. However, usually this reordering has a high computational complexity. For effective visualization of high-dimensional structures, also PCP requires a proper ordering of the dimensions. In this paper , we propose methods for reordering dimensions in PCP in such a way that high-dimensional structures (if present) become easier to perceive. We also present a method for dimension reordering in SPM which yields results that are comparable to those of existing approaches, but at a much lower computational cost. Our approach is based on finding relevant subspaces for clustering using a quality criterion and cluster information. The quality computation and cluster detection are done in image space, using connected morphological operators. We demonstrate the potential of our approach for synthetic and astronomical datasets, and show that our method compares favorably with a number of existing approaches.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Constructing Two-Dimensional Multi-Wavelet for Solving Two-Dimensional Fredholm Integral Equations

In this paper, a two-dimensional multi-wavelet is constructed in terms of Chebyshev polynomials. The constructed multi-wavelet is an orthonormal basis for space. By discretizing two-dimensional Fredholm integral equation reduce to a algebraic system. The obtained system is solved by the Galerkin method in the subspace of by using two-dimensional multi-wavelet bases. Because the bases of subs...

متن کامل

Finding and Visualizing Subspace Clusters of High Dimensional Dataset Using Advanced Star Coordinates

Analysis of high dimensional data is a research area since many years. Analysts can detect similarity of data points within a cluster. Subspace clustering detects useful dimensions in clustering high dimensional dataset. Visualization allows a better insight of subspace clusters. However, displaying such high dimensional database clusters on the 2-dimensional display is a challenging task. We p...

متن کامل

Visual Exploration of High-Dimensional Data through Subspace Analysis and Dynamic Projections

We introduce a novel interactive framework for visualizing and exploring high-dimensional datasets based on subspace analysis and dynamic projections. We assume the high-dimensional dataset can be represented by a mixture of low-dimensional linear subspaces with mixed dimensions, and provide a method to reliably estimate the intrinsic dimension and linear basis of each subspace extracted from t...

متن کامل

Isotropic Constant Dimension Subspace Codes

 In network code setting, a constant dimension code is a set of k-dimensional subspaces of F nq . If F_q n is a nondegenerated symlectic vector space with bilinear form f, an isotropic subspace U of F n q is a subspace that for all x, y ∈ U, f(x, y) = 0. We introduce isotropic subspace codes simply as a set of isotropic subspaces and show how the isotropic property use in decoding process, then...

متن کامل

A Novel Dimension Reduction Procedure for Searching Non-Gaussian Subspaces

In this article, we consider high-dimensional data which contains a low-dimensional non-Gaussian structure contaminated with Gaussian noise and propose a new linear method to identify the non-Gaussian subspace. Our method NGCA (Non-Gaussian Component Analysis) is based on a very general semiparametric framework and has a theoretical guarantee that the estimation error of finding the non-Gaussia...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Comput. Graph. Forum

دوره 30  شماره 

صفحات  -

تاریخ انتشار 2011